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Miusskaya Square 4, 125047 Moscow, Russia
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Abstract. In the limit of the strong magnetic fieldH → ∞, the closed hierarchy of kinetic
equations for correlation functions of an arbitrary order is derived for a one-dimensional kinetic
Ising model. This hierarchy allows asymptotically exact solution in quadratures. For the first
time the closed set of equation for generating functions of the domain distribution of the
identically oriented spins have been obtained. The relations between kinetic parameters that
make it possible to find exact solutions in quadratures are indicated.

1. Introduction

The Ising model being the simplest one among the models of cooperative phenomena has
a significant place in theoretical physics and is described in many monographs and studies
on statistical mechanics [1–5]. The equilibrium states, along with relaxational processes
in different physical systems, can be presented in the terms of this model [6–9]. The
original Ising model [10] was proposed for a description of the equilibrium magnetics whose
microstate is characterized by the spin configuration on the one-dimensional lattice with each
spin oriented along or opposite to the external magnetic field. In this model the interaction
energy of the spins in an arbitrary configuration is equal to the sum of the interaction energy
of the pairs’ neighbour spins. After extension the field of applicability of the Ising model
to non-equilibrium systems can be characterized by the probability of spin flip depending
only on the orientation of its nearest neighbours. The theory of the equilibrium and non-
equilibrium Ising model allows the calculation of the correlation function along with average
magnetization [2, 3, 5, 8, 9]. The formalism of the Ising model has a wide application
in adsorption, non-ideal gases, binary alloys etc [2, 3, 5–7]. Many problems in physics
(calculation of unperturbed sizes and dipole moments of linear macromolecules along with
their relaxational characteristics [11–14]), biophysics (description of helix-coli transition
in biopolymers [15–18]) and chemical physics (calculation of equilibrium and kinetics of
adsorption or chemical reaction on macromolecules of the small polymer molecules [19–22])
can be described in the framework of the kinetic Ising model. In this case the analogue of
spin configuration is the infinite sequence of two symbolsA andB, whose sense depends
on the specifics of the problems under consideration [23]. In these terms the general one-
dimensional kinetic Ising model is determined according to the scheme

AAA AAB BAB

k0 ↓↑ k̃2 k1 ↓↑ k̃1 k2 ↓↑ k̃0

ABA ABB BBB.

(1)
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The six parameterski, k̃i (i = 0, 1, 2), are the probabilities of corresponding transitions per
unit time.

At the present time the exact solution of the kinetic Ising model at arbitrary values
of the six parameters has not been found and the theoretical investigations in this field
are connected with either development of approximation methods or using simplified
modifications of a general model which have exact solutions [9]. The best known among
these modifications was proposed by Glauber [24]. It corresponds to the following relations
between kinetic parameters

2k1− k0− k2 = 0 2k̃1− k̃0− k̃2 = 0 k1k̃0 = k0k̃1. (2)

The relation (2) leads to thermodynamical equality for the rates of the elementary
transformations (1)

kakc = k2
b (3)

ka = k̃0

k0
kb = k̃1

k1
kc = k̃2

k2
. (4)

The conditions (2) upon the kinetic parameters of model (1) leave only three of them
independent. Such parameters in Glauber’s model [24] are the following

α = k̃1+ k1 β = k̃1− k1

k̃1+ k1

γ = k1− k0+ k̃1− k̃0

k̃1+ k1

. (5)

α is equal to the average spin flip frequency, while the rest—β and γ—characterize
equilibrium. Parameterβ = tanh(H/T ) depends on the relation of the energy of spin
(µH ), with the magnetic momentµ = 1 in a magnetic fieldH , to temperatureT , whereas
γ = tanh(2J/T ) is determined by the difference of interaction energy 2J between parallel
and antiparallel spin configurations of the neighbour spins.

The exact analytical solution for two [24] and higher [25] points correlators in the
Glauber model have been found only for the absence of magnetic field (H = 0), when

k0 = k̃0 k1 = k̃1 k2 = k̃2 α = 2k1 β = 0 γ = k1− k0

k1
. (6)

Keller [26] had proposed the second exact solvable case of the kinetic Ising model. It
is determined by the following relationships

k̃0 = k̃1 = k̃2 = 0 (7)

which allow spin flips in only one direction [26]. In equilibrium due to condition (7) all spins
have an orientation along the magnetic field. Therefore only the investigation of relaxational
processes has theoretical interest. For the first time the problem of time evolution of
probability P(A) in a one-dimensional lattice of stateA (equal to the problem of average
magnetization dynamics) in the framework of the second model was solved by Keller [26]
who used an arbitrary assumption, and after that, more rigorously, in [27]. The exact solution
for the two-point correlation function was obtained in [28], and independently in [29]. In
principle, algorithms, suggested in cited papers, make it possible to write down the equations
for correlations of an arbitrary order, but require cumbersome probabilistic considerations.
For this reason the authors of [28, 29] did not present equations for correlators whose order
exceeds two.

The probabilistic approaches used in [28, 29], are based on considerations of all possible
channels of transformations leading to the change of configurations of two-symbol sequences
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and also on the fundamental property of statistical independence of arbitrary sequencesU

andV separated byAA dyad

P(UAAV ) = P(UAA)P (AAV )

P (AA)
(8)

whereP(. . .) represents the probability of the corresponding sequence. For the first time
relation (8) was rigorously proved by Mityushin [30], and later was independently obtained
in [31], where it was referred to as the ‘shielding property’ ofAA dyad. Mityushin’s proof
of theorem (8) was based on considerations of Markovian processes with continuous time
on space of the infinite two-symbols sequences, whose well developed mathematical theory
[30, 32–34] is not efficient enough for obtaining a useful result in physics.

Our approach, proposed for the solution of the Keller model (7), is a traditional
one, widely applied in theoretical physics for descriptions of magnetics with Pauli master
equation. The first part of this paper contains general formulations of this approach to a
one-dimensional kinetic Ising model (1). In the second part we demonstrate the truncation
of an infinite equation hierarchy for correlation functions by the example of one- and two-
point correlators. After that we present general equations for correlators of an arbitrary
order and their generating functions which allow exact analytical solutions in quadratures.
The third part contains the derivation of a closed system of partial derivative equations for
generating the function of probability distribution by length of one-type symbol blocks and
its exact solution for some particular cases.

2. General formulation of one-dimensional kinetic Ising model

Let us consider an infinite one-dimensional lattice contained in everyith site spinσi ,
oriented along or opposite to an external magnetic field. Two values of a spin variable
σi = ±1 correspond to the orientations of vectorσi . The system microstate is represented
by the spin configuration{σi}, i.e. the concrete orientation of all spins in the sites of the
lattice. The time evolution of probabilityP({σi}; t) of the system in microscopic state{σi}
at the timet is governed by the master equation [35]

d

dt
P ({σi}; t) = −

∑
i

3+i P ({. . . , σi, . . .}; t)+
∑
i

3−i P ({. . . ,−σi, . . .}; t). (9)

The kinetic coefficients3+i and3−i are correspondingly equal to the infinitesimal probability
of spin flip from stateσi to−σi andvice versa, while other spins remain fixed. The concrete
design of functions3+i , 3

−
i is determined by the choice of model. In a general kinetic Ising

model (1) the probability3+i depends (apart from spin variableσi) on variablesσi−1 and
σi+1

3+i = 1
8(1+ σi){(k0+ k2− 2k1)σi−1σi+1+ (k0− k2)(σi−1+ σi+1)+ (k0+ k2+ 2k1)}

+ 1
8(1− σi){(k̃0+ k̃2− 2k̃1)σi−1σi+1+ (k̃2− k̃0)(σi−1+ σi+1)

+(k̃0+ k̃2+ 2k̃1)} (10)

and3−i can be obtained from3+i by formal substitutionσi for −σi .
The traditional approach which uses spin variablesσi = ±1, is especially convenient

for kinetic problems in the absence of a magnetic field, when the probability of both
spin orientations are equal. When considering the problems with broken symmetry, it
is convenient to apply other spin variables

si = 1+ σi
2

(11)
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which take values 0, 1. Thus, in this case each microscopic state of the system is represented
by the given two-symbols sequence 1, 0 (orA, B). Instead of the traditional identityσ 2

i = 1,
the spin algebra in new variables (11) is determined by the following one

s2
i = si . (12)

As may be proved by direct calculation, the stationary solution of the master equation (9)
is the standard Gibbs distribution

P({σi}) = 1

Z exp

{
J

T

∑
k

σkσk+1+ H
T

∑
k

σk

}
(13)

whereZ is the partition function of a system. One needs to express in relations (10) the
kinetic parameters̃ki in terms of ki using expressions (4) and equilibrium constants of
elementary transformations (1)

ka = exp

{
(4J + 2H)

T

}
kb = exp

{
2H

T

}
kc = exp

{
(−4J + 2H)

T

}
. (14)

It is evident that the exponential index in each of the expressions (14) corresponds to the
change of free energy of the system, i.e.

4Fk = 2J (σk−1+ σk+1)+ 2H (15)

due to a flip of thekth spin, situated in the middle of triads (1). The right-hand side of
equation (9) will be a linear form in parameterski (i = 0, 1, 2). It is easy to check that the
coefficients of this form are equal to zero at arbitrary values of the equilibrium parameters
J andH . The statistical weight of any equilibrium configuration{σi}, characterized by
the exponent in expression (13) resolves into a product of factors dependent upon the
configuration of pairs of the neighbouring spins. Thus the expression for a normalized
constantZ in (13) can be presented as the product of the transfer matricesVk [5](

exp((J +H)/T ) exp((J −H)/T )
exp((J −H)/T ) exp((−J −H)/T )

)
. (16)

Not only has the general solution of equation (9) not been found in the non-equilibrium
case, but expressions for the time evolution of the average magnetization and correlation
functions have only been obtained in a very few cases. Among all other correlators which
have by definition the meaning to find the given symbols in the fixed sites of a one-
dimensional lattice, it is sufficient without loss of generality to consider only the special
type of correlation functions

〈si1si2 . . . sin〉 =
∑
{si }
si1si2 . . . sinP ({si}; t) (17)

when there are symbolsA (or 1) in i1, i2, . . . , in sites. Because of stoichiometric conditions
all other n-point correlation functions can be expressed in terms of correlators (17) and
analogous ones of lower order.

In order to simplify the derivation of kinetic equations for correlation functions (17) we
present the generating function as follows

9({hi}; t) =
∑
{si }
P({si}; t) exp

{∑
j

h+j sj + h−j (1− sj )
}

(18)

whereh+j , h−j are the components of fieldhj , conjugated to variablesj . The correlators of
an arbitrary ordern can be obtained due to the relation

〈si1si2 . . . sin〉 =
∂n9({hi}; t)
∂h+i1 . . . ∂h

+
in

(19)
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where after taking thenth derivative of function9({hi}; t) with respect to corresponding
fields one has to set allhi to zero.

In order to obtain the equation for the generating function9({hi}; t) one has to multiply
both sides of the master equation (9) (written in variables{si}) by exp{∑j h

+
j sj+h−j (1−sj )}

and average them on all possible symbol sequences. As a result we obtain differential
equations in partial derivatives of the third order

∂

∂t
9({hi}; t) = −

∑
j

{
[1− exp(h−j − h+j )]D̂+j + [1− exp(h+j − h−j )]D̂−j

}
9({hj }; t) (20)

where the differential operator is

D̂+j =
∂

∂h+j

[
(k0+ k2− 2k1)

∂2

∂h+j−1∂h
+
j+1

+ (k1− k2)

(
∂

∂h+j−1

+ ∂

∂h+j+1

)
+ k2

]
(21)

andD̂−j is formed fromD̂+j by formal substitutionh+j onh−j and all ofkα on k̃α (α = 0, 1, 2).
Taking term by term the derivatives of both parts (20) with respect to the corresponding

fields, setting allhi to zero and using the simple operator equality

∂

∂h−j
= 1− ∂

∂h+j
(22)

that enables us to eliminate the derivative onh−j , we obtain the hierarchy of kinetic equations
for correlation functions (17). In the general case this infinite hierarchy is not closed, because
the right-hand side of these equations will contain correlators of subsequently higher orders
than those on the left-hand side. But, in at least two special cases of a kinetic Ising model
it is possible to break the mentioned infinite hierarchy of equations. These cases are the
Glauber model (2) and the Keller model (7), which have the following transition probabilities
(10), respectively

3G
i = 1

2α[(1+ β)[1− γ + γ (si−1+ si+1)] + 2(γ − β)si − 2γ si(si−1+ si+1)] (23)

3K
i = si [(k0+ k2− 2k1)si−1si+1+ (k1− k2)(si−1+ si+1)+ k2]. (24)

The transition probabilities (23) and (24) for both of the models depend on three parameters,
but the degree of polynomial3k

i in variables si is one unit higher than degree of
polynomial3G

i .

3. Equations for correlations functions

The method of truncation of equation hierarchy for correlation functions can be easily
demonstrated by example one and two-point correlators. To begin we write down these
equations for the Glauber model

d〈si〉
d(αt)

= −(1− γβ)〈si〉 − γβ(〈si−1si〉 + 〈sisi+1〉)

+1

2
(1+ β)[1− γ + γ (〈si−1〉 + 〈si+1〉)] (25)

d〈sisk〉
d(αt)

= −2(1− γβ)〈sisk〉 − γβ(〈si−1sisk〉 + 〈sisi+1sk〉 + 〈sisk−1sk〉 + 〈sisksk+1〉)

+1

2
(1+ β)[(1− γ )(〈si〉 + 〈sk〉)+ γ (〈si−1sk〉 + 〈si+1sk〉

+〈sisk−1〉 + 〈sisk+1〉)] (i 6= k) (26)
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and the Keller model
d

dt
〈si〉 = −k2〈si〉 + (k2− k1)(〈si−1si〉 + 〈sisi+1〉)+ (2k1− k0− k2)〈si−1sisi+1〉 (27)

d

dt
〈sisk〉 = −2k2〈sisk〉 + (k2− k1)(〈si−1sisk〉 + 〈sisi+1sk〉 + 〈sisk−1sk〉 + 〈sisksk+1〉)

+(2k1− k0− k2)(〈si−1sisi+1sk〉 + 〈sisk−1sksk+1〉) (i 6= k). (28)

It is worth noting that these sets of equations are not formally closed, because correlators
on the right-hand side of the equations have higher order than those on the left-hand side.
For the Glauber model the closed equations hierarchy can be obtained in two limiting cases,
corresponding either to zero or infinite magnetic field

(a) H = 0, β = 0 (b) H = ∞, β = −1. (29)

It is noteworthy that case (b) was not considered either in Glauber’s original paper [24], or
in its following generalizations. We shall not consider it specially, because it reduces to the
Keller model at the following values of its kinetic parameters

k1 = α k0 = α(1− γ ) k2 = α(1+ γ ). (30)

It is possible to obtain the closed set of equations for one- and two-point correlators in
the Keller model due to its shielding property (8) and its consequences [30]

P(UAn) = P(UAA)(1− θ)n−2 θ = 1− exp(−k0t) (n > 2). (31)

In its original paper [30] the proof of theorem (8) was based on the general theory of
Markovian processes with local interactions [34]. The alternative method of proof of
statistical independence property (8), based on direct analysis of master equation (9), is
presented in the appendix. Let us now demonstrate the truncation of the equation hierarchy
for correlation functions of the first two orders (27) and (28) using this shielding property.

It is easy to note that according to (31) the three-point correlator on the right-hand side
of equation (27) can be expressed in terms of a two-point correlator

〈si−1sisi+1〉 = 〈sisi+1〉(1− θ). (32)

The equation for this two-point correlator can be found from (28) atk = i+1. The right-hand
side of the last equation contains besides〈si−1sisi+1〉 only identical correlator〈sisi+1si+2〉,
which can be expressed according to (32) in terms of the two-point correlation functions.
Thus, using expression (32) we obtain the closed set of two equations for correlators〈si〉
and 〈sisi+1〉. Taking into account the fact that we consider only translational invariant
solutions of the master equations (9) (because Mityushin’s theorem (8) holds only for these
ones) the mentioned correlatorsP(A) andP(AA) do not depend on indexi. Turning to
the equation for a two-point correlator (28), we note that due to uniformity and isotropy
of the one-dimensional system under consideration the two-point correlation function will
depend only on the absolute value of the differencen = |k − i| coordinates of lattice sites.
The case ofn = 1 was considered above. Atn > 1 the highest order of correlators on the
right-hand side of equation (28) will be equal to three, because all the four-point correlators
can be eliminated via expressions

〈si−1sisi+1sk〉 = 〈sisi+1sk〉(1− θ) = P(A3Xn−2A)

= P(A2Xn−2A)(1− θ) = P(AXn−2A2)(1− θ) = P(AXn−2A3)

= 〈sisk−1sk〉(1− θ) = 〈sisk−1sksk+1〉 (33)

which are evident from (31). Hereinafter the symbolX represents either or both symbols,A,
B. In turn, deriving the equations for three-point correlators (33) one finds them unclosed
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since right-hand sides of these equations will contain four- and five-point correlators. These
latter can be expressed through the former ones via equations

〈si−1sisi+1sksk+1〉 = 〈sisi+1sksk+1〉(1− θ) = P(A3Xn−2A2) = P(A2Xn−2A2)(1− θ)
= P(A2Xn−2A3) = 〈si−1sisk−1sk〉(1− θ) = 〈si−1sisk−1sksk+1〉. (34)

The equations for the above-mentioned four-point correlators are closed due to property
(31). Thus we have the set of three linear differential equations for correlation functions
P(AXn−1A), P(AXn−1AA) andP(AAXn−1AA) with time-dependent coefficients [28].

The equations for correlators (17) of an arbitrary order can be obtained by taking a
term-by-term derivatives of both parts of equation (20) (in the case of the Keller model
D̂−j ≡ 0), with respect to its corresponding fields

d

dt
〈si1si2 . . . sin〉 = −nk2〈si1si2 . . . sin〉 + (k2− k1)

n∑
k=1

(〈si1si2 . . . sik−1sik . . . sin〉

+〈si1si2 . . . sik sik+1 . . . sin〉)+ (2k1− k0− k2)

n∑
k=1

〈si1si2 . . . sik−1sik sik+1 . . . sin〉

i1 6= i2 6= · · · 6= in. (35)

Taking into account the translational invariance of the considered system, we define the
(n+ 1)-point correlation function as follows

P(1fn) = P(AXf1AXf2 . . . AXfnA) = 〈si0si1 . . . sin〉 (36)

wherefk = ik− ik−1−1, fk > 0, k = 1, . . . , n. This function is the probability of sequence

Uαβ
n (f) ≡ AαXf1AXf2 . . . AXfnAβ =

∑
{U}

AαUf1AUf2 . . . AUfnA
β (37)

of (n+ 1) symbolsA, separated by distancesf1, . . . , fn from each other atα, β = 1. The
sum in (37) is taken over all possible sets{Ufi } of sequencesUf1, Uf2, . . . , Ufn , comprised,
correspondingly fromf1, f2, . . . , fn symbols. The equation for the correlator (36) follows
immediately from (35)

(1− θ) d

dθ
P (1fn) =

n+1∑
j=1

(1− δ(fj−1, 0))(1− δ(fj , 0))

{
(r − q − 1)P (1fn)

+
(
q − 2r

2

)
[P(1fj−1− ej−1, 0,jfn)+ P(1fj−1, 0,jfn − ej )]

+rP (1fj−1− ej−1, 0, 0j ,fn − ej )
}
+

n∑
j=1

n∑
k=j

T (j, k) (38)

where the following designations are used

q = 2(k − 1) r = 2k − k′ − 1 k = k1/k0 k′ = k2/k0

T (j, k) = φ(j, k)
{
(j − k − q − 2)P (1fj−1,j0k, k+1fn)

+q
2
(P (1fj−1− ej−1, 0,j0k, k+1fn)+ P(1fj−1,j0k, 0, k+1fn − ek+1))

}
φ(j, k) = (1− δ(fj−1, 0))

( k∏
µ=j

δ(fµ, 0)

)
(1− δ(fk+1, 0)) (39)
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and for compactness of formulae we formally denote

P(1f0,j0k, k+1fn) = P(j0k, k+1fn) = P(1fn)
k∏

µ=1

δ(fµ, 0)

P (1f0,j0n, n+1fn) = P(1fj−1,j0n) = P(1fn)
n∏

µ=j
δ(fµ, 0)

P (1f0, 00k, n+1fn) = P(00n) = P(1fn)
n∏

µ=1

δ(fµ, 0)

P (1fj−1,j0k, k+1fn) = P(1fn)
k∏

µ=j
δ(fµ, 0) f0 = 1, fn+1 = 1 (40)

and ej is a vector withj th component equal to 1, and all others are equal to zero. The
correlatorP(1fj−1−ej−1, 0,jfn) represents the probability of finding the sequence formed
fromU11

n (f) by adding oneA symbol to the left from thej thA symbol. In the same manner
functionP(1fj−1−ej−1, 0, 0,jfn−ej ) represents the probability of sequence formed from
U11
n (f) by adding to it twoA symbols, one to the left and one to the right fromj th A

symbol. The shielding property (8) of the Keller model enables us to write down these
correlators as follows

P(1fj−1− ej−1, 0,jfn) = [P(AA)]−1P(1fj−1− ej−1, 0)P (0,jfn)

P (1fj−1− ej−1, 0, 0,jfn − ej )
= (1− θ)[P(AA)]−1P(1fj−1− ej−1, 0)P (0,jfn − ej ) (41)

where the probability of finding theAA dyad is given by the expression [27, 28]

P(AA) = (1− θ)q+2 exp(qθ). (42)

Although the relationships (41) allow us to lower the order of the majority of correlators on
the right-hand side of equation (38), however, the hierarchy of equations (38) is not formally
closed because its right-hand side contains correlatorsP(0, 1fn) andP(1fn, 0). The order
of these correlators is one unit higher than order of correlatorP(1fn) on the left-hand side
of equation (38). The mentioned correlation function describe the probability of sequences
U21
n (f) andU12

n (f) (37), respectively. In its turn the right-hand side of the equations for
P(0, 1fn) and P(1fn, 0) contain correlatorsP(0, 1fn, 0), which represent the probability
of finding the sequenceU22

n (f) (37). Finally, the hierarchy for correlatorsP(0, 1fn, 0)
turns out to be closed in the manner similar to the considered case of two-point correlator.
Entering the notation

P(1fn) = P11(1fn) P (0, 1fn) = P21(1fn) P (1fn, 0) = P12(1fn)

P (0, 1fn, 0) = P22(1fn) (43)

we write down the final form of the closed set of equations for correlators (43)

(1− θ) d

dθ
Pαβ(1fn) = Pαβ(1fn){(1− δ(f1, 0))η1(α)+ (1− δ(fn, 0))η1(β)}
+η2(α)(1− δ(f1, 0))P2β(1fn)+ η2(β)(1− δ(fn, 0))Pα2(1fn)

+η3(α)(1− δ(f1, 0))P2β(1fn − e1)+ η3(β)(1− δ(fn, 0))Pα2(1fn − en)
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+
n∑
j=2

(1− δ(fj−1, 0))(1− δ(fj , 0))

{
(r − q − 1)Pαβ(1fn)

+[P(AA)]−1

[(
q − 2r

2

)
[Pα2(1fj−1− ej−1)P2β(jfn)

+Pα2(1fj−1)P2β(jfn − ej )] + r(1− θ)Pα2(1fj−1− ej−1)P2β(jfn − ej )
]}

+[P(AA)]−1
n∑
j=1

n∑
k=j

Qαβ(j, k) (44)

where the following designations are used

Qαβ(j, k) = φ(j, k)(1− θ)k−j
{
dαβ(j, k)Pα2(1fj−1)P2β(k+1fn)

+q
2
(1− θ)(Pα2(1fj−1− ej−1)P2β(k+1fn)+ Pα2(1fj−1)P2β(k+1fn − ek+1))

}
η1(ρ) = (2− ρ)r − q − ρ + q

2
(1− θ)(ρ − 1)

η2(ρ) = 1

2
(q − 2r)(2− ρ)

η3(ρ) = 1

2
(q − 2r)(1− θ)ρ−1+ r(1− θ)

dαβ(j, k) = j − k − q − 2+ (1− α)δ(j, 1)+ (1− β)δ(k, n) (45)

and the extensions of definition (36) introduced as follows

Pα2(1f0) = Pα2(1f0− e0) = (1− θ)α−1P(AA)

P2β(n+1fn) = P2β(n+1fn − en+1) = (1− θ)β−1P(AA).

To obtain the analytical solution for equation (44) it is convenient to construct the
generating functions as follows

Gαβ(1xn) =
∑
f

Pαβ(1fn)
n∏
k=1

x
fk
k (α, β = 1, 2). (46)

The functionsG11 are of major importance for the statistical thermodynamics of polymers,
because they determine (in momentum space) the coefficients of the Landau expansion of
the free energy of the macromolecule solution formed by the cooperative chemical reaction
under the scheme (1) [36]. To obtain the equations for the generating functions (46) one has
to multiply both sides of equation (44) byxf1

1 x
f2
2 . . . x

fn
n and take the sum over all values

of variablesf1, f2, . . . , fn

(1− θ) d

dθ
Gαβ(1xn) = {η1(α)+ η1(β)+ (n− 1)(r − q − 1)}Gαβ(1xn)

+{η2(α)+ η3(α)x1}G2β(1xn)+ {η2(β)+ η3(β)xn}Gα2(1xn)

−{η2(α)(1− θ)+ η1(α)(1− θ)α−1}G2β(2xn)

−{η2(β)(1− θ)+ η1(β)(1− θ)β−1}Gα2(1xn−1)

+[P(AA)]−1

{ n∑
j=2

Fαβ +
n∑
j=1

n∑
k=j

Rαβ(j, k)

}
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Fαβ = ρ(xj−1, xj )Gα2(1xj−1)G2β(jxn)+ λ(xj−1)Gα2(1xj−1)G2β(j+1xn)

+λ(xj )Gα2(1xj−2)G2β(jxn)+ (r − q − 1)(1− θ)Gα2(1xj−2)G2β(j+1xn)

Rαβ(j, k) = (1− δ(xj−1, 0))(1− δ(xk+1, 0))(1− θ)k−j

×
[
dαβ(j, k)+ q

2
(1− θ)(xj−1+ xk+1)

]
Gα2(1xj−1)G2β(k+1xn) (47)

where besides those presented in (45) the following designations are used

ρ(a, b) = 1
2(q − 2r)(a + b)+ r(1− θ)ab

λ(a) = q − r + 1− 1
2(q − 2r)(1− θ)a

and formal extensions of definition (46) introduced as follows

Gα2(1x0) = P(AA)(1− θ)α−1 G2β(n+1xn) = P(AA)(1− θ)β−1

x0 = xn+1 = 1. (48)

Because atθ = 0 initial infinite sequences consist of onlyA symbols the initial condition
for generating function (46) is as follows

Gαβ(1xn) =
n∏
k=1

[
1

(1− xk)
]
.

It is essential that equations (47) are linear with respect to functionsGαβ(1xn), because all
nonlinear terms contain the generating functions of correlators of lower order than those
on the left-hand side of (47). This circumstance makes it possible to find solutions for
the generating functions of the correlators of an arbitrary ordern and therefore correlation
functions, with knowledge of all the generating functions of correlators of lower orders. Thus
the set of equations (47) allows exact analytical solution in quadratures. As an example
we present the set of equations for the generating functions of the three-point correlators
G11,G12 = G21,G22

(1− θ) d

dθ
Gαβ(1x2) = [η1(α)+ η1(β)+ (r − q − 1)]Gαβ(1x2)

+[η2(α)+ η3(α)x1]G2β(1x2)+ [η2(β)+ η3(β)x2]Gα2(1x2)

+w(α, x2)G2β(2x2)+ w(β, x1)Gα2(1x1)

+[P(AA)]−1ρ(x1, x2)Gα2(1x1)G2β(2x2)+ P(AA)(1− θ)α+β−1

×[r − 2q − 2− α − β + q(1− θ)] (α, β = 1, 2) (49)

where besides those presented in (45) and (48) the following designations are used

w(µ, z) = (1− θ)µ−1

{
λ(z)+ (1− δ(z, 0))[−q − 1− µ+ q

2
(1− θ)(1+ z)] − η1(µ)

}
−(1− θ)η2(µ). (50)

4. The domain length distribution of the identically oriented spins

In this section we consider in the framework of the Keller model, the problem of finding the
probabilities ofB-clusters, i.e. contiguous sequences of symbolsB framed byA symbols

P(ABnA) n > 0. (51)

Although the probabilities of the contiguous sequences ofA symbols can be obtained exactly
in the general case [27], the solution for the probabilities of finding theB-clusters has not
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been found at the present time. Different approximations have been used for this problem’s
solution: the ‘B-approximation’ [28], is based on an arbitrary assumption of the statistical
independence of any sequences separated by theAB dyad. Using this approximation,
whose area of application remains unknown, authors [28] have obtained the closed set of
nonlinear equations for the probabilities of findingB-clusters and presented their numerical
simulations at different values of kinetic parameters. Another approach was suggested
by Evanset al [37]. In this framework one has to express the probabilityP(ABnA) in
terms of correlators (36) using the stoichiometric relations, and then write down the exact
sets of equations for these correlators, whose number dramatically increases asn grows.
Performing this procedure, Nordet al [37] found probabilitiesP(ABn)A for n 6 11 by
solving numerically the hundreds of differential equations.

To find the probabilities ofP(ABnA) we propose an original approach. First, we
extend the definition ofB-clusters distinguishing them in number of theA symbols which
frame contiguous sequence ofB-symbols. Thus we shall consider the generalizedB-clusters
AαBnAβ , where indicesα andβ may take values 1 and 2. We demonstrate that the equations
for correlators’ generating function (47) can be used to obtain aclosed set consisting of
partial differential equations of first order for generating functions of probabilities of the
generalizedB-clusters. The derivation of this set of equations starts with the stoichiometric
identity which can be easily proved by induction:

P(UBnV ) = P(UXnV )−
n−1∑
α=0

P(UBαAXn−α−1V ) (52)

whereU andV are arbitrary sequences. Choosing in (52)U = V = A, we obtain

P(ABnA) = P(AXnA)−
n−1∑
α=0

P(ABαAXn−α−1A). (53)

Using the equality (52) withU = A, V = AXn−α−1A, we can write down

P(ABnA) = P(AXnA)−
n−1∑
α=0

P(ABαAXn−α−1A)

+
n−1∑
α=0

α−1∑
β=0

P(ABβAXα−β−1AXn−α−1A). (54)

The sequential use of this procedure leads to the formula

P(ABnA) ≡ PB11(n) =
n∑
s=0

(−1)s
n−s∑
f1=0

. . .

n−s∑
fs+1=0

δ

(
n− s −

s+1∑
λ=1

fλ

)
P11(1fs+1) (55)

where the probabilities of findingB-clusters are linearly expressed in terms of the correlators
(36) and (43). Now we define the following generating functions

Gαβ(y;x) =
∞∑
n=0

ynGαβ(1xn+1) αβ = 1, 2. (56)

Using the relationship

GB
αβ(x) = Gαβ(−x; x1 = x, x2 = x, . . . , xn = x, . . .) (57)

we express in terms of (56) the generating functions of the probabilities of generalized
B-clusters

GB
αβ(x) =

∞∑
n=0

xnPBαβ(n). (58)



8490 S I Kuchanov and M A Aliev

To obtain the relation (57) relating generating functions (56) to (58), one has to multiply
both sides of expression (55) byxn and carry out the sum over alln > 0.

For the functions

gαβ(y, x) = Gαβ(−y; x1 = x, x2 = x, . . . , xn = x, . . .) (59)

which are equal to generating functions of the probabilities of generalizedB-clusters (58)
at y = x, the following set of the partial differential equations has been derived[
(1− θ) ∂

∂θ
+ (q − r + 1)

∂

∂y

]
gαβ(y, x) = gαβ(y, x)[2(r − q − 1)− (α + β − 2)a(θ)]

+b(θ)[g2β(y, x)(2− α)+ gα2(y, x)(2− β)]
+
[

1

P(AA)

]
c(θ)gα2(y, x)g2β(y, x)+ P(AA)(1− θ)α+β−2

×[q − r + rδαβ(α + β − 3)+ r(1− θ)(4− α − β − y)] (60)

where the following designations are used

a(θ) = r + 1− (1− θ)
[
q

2
(1+ x)− (q − r)y

]
+ ry(y − x)(1− θ)2

b(θ) = 1

2
(q − 2r)(1+ x − 2y)+ r(1− θ)(1− y)(x − y)

c(θ) = y(y − x)[q − 2r − r(y − x)(1− θ)]. (61)

The set of equations (60) can be derived by multiplying equations (47) term by term by
(−y)n and carrying the sum over all possible values ofn. When the solution of equation set
(60) is obtained, it is possible to find the required generating function of the probabilities
of generalizedB-clusters using the relationship

GB(x) ≡ GB
11(x) = g11(x, x). (62)

The equation set (60) can be solved sequentially. At first one has to find the solution of the
equation forg22(y, x), and then substitute it in the equation forg12(y, x), whose solution,
in turn, is inserted into the equation forg11(y, x). This procedure forces us to find the
solution of the nonlinear problem at the first step. If we succeed in solving this problem
then finding the functionsg12(y, x) andg22(y, x) will reduce to quadratures.

As usual, to solve the partial differential equation set we use the method of characteristics
[38]. Along the characteristics the equation for the functiong22(y, x) comprises the well
known Riccatti equation, which enables the exact solution in the special case of the
simplified Keller model, when its parametersk0, k1, k2 in arithmetic progression. In the case
whenr (39) is equal to zero we have found the partial solution of the Riccatti equation. This
enables us to find its general solution and to obtain generating functions of the probabilities
of generalizedB-clusters in an explicit form

gαβ(y, x) = (1− θ)α+β−3P(AA)
8(y, x)

y(1+8(y, x)) (63)

where the following notation is used

8(y, x) = y(1− θ)q+1 exp(qxθ)

(
1

1− x + q
∫ θ

0
dz(1− z)−q−1 exp(−qxz)

)
. (64)

It is worth noting that expression (63) can be derived in another way based on the
property of statistical independence (8) and its consequence (31), which in the case of
r = 0 takes the form [30]

P(UAV ) = P(UA)P (AV )

P (A)
P (UAn) = P(UA)(1− θ)n−1 n > 1 (65)
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whereP(A) = (1− θ)q+1 exp(qθ) [27, 28]. The stoichiometric identity (53), taking into
account condition (65), is written as follows

P(ABnA) = P(AXnA)− [P(A)]−1
n−1∑
α=0

P(ABαA)P (AXn−α−1A). (66)

Multiplying both sides of (65) byxn and taking the sum overn > 0, we obtain a simple
expression

GB
11(x) =

G11(x)

1+ x[P(A)]−1G11(x)
G11(x) ≡ G11(1x1) = x−1P(A)8(x, x) (67)

connectingGB
11(x) (62) with the generating functionG11(1x1) of the two-point correlators

P(AXnA). It is known [22, 29] that in the case of the simplified model, correlators
P(AXnA) ≈ (qθ)n/(n!), asn→ θ , i.e. this demonstrates decay sharper than exponential.
The asymptotical decay of the probabilityP(ABnA) is determined by the singular points of
the generating function (63) and (67). At positive values ofq � 1 we obtainP(ABnA) ≈ θn
as n → ∞. At large values ofq the probability P(ABnA) asymptotically decays
exponentially (asn → ∞); P(ABnA) ≈ θn as θ → 1 and if θ → 0 thenP(ABnA)
decays as(qθ)n [37].

It is possible to find the explicit form of the generating functions of the probabilities
of generalizedB-clusters in another partial case atr − q − 1 = 0, when equation (60)
is reduced to a set of ordinary differential equations. In this case the factor at partial
derivative with respect toy vanishes so after settingy = x in equations (60) we obtain
the linear differential equation set for functionsgαβ(x, x). Integrating the equation for
g22(x, x), g12(x, x), g11(x, x) subsequently, we get

GB(x) = g11(x, x) = P(AA)+ 4x(1− x)
[q − (q + 2)x]2

[P(AA)− 1]

+x
[

1+ 2(1− x)[4− (q + 2)2(1− x)]
[q − (q + 2)x]2

]
×
∫ θ

0
dz(1− z)q+2 exp(qz)+ 4(q + 2)x(1− x)

[q − (q + 2)x]2
I (0, θ x)

+x
∫ θ

0
dz(1− z)−q exp(−(q + 2)xz)[I (z, θ, x)]2

I (z, θ, x) = 1

2
(q + 2)(1− x)

∫ θ

z

dt (1− t)q+1 exp

{
1

2
[q + (q + 2)x]t

}
. (68)

Whenq = 0 it is possible to integrate the set of equations (68) exactly and obtain

GB(x) = 1

2
(1+ (1− θ)2)+ 1

x

(
θ − θ2+ θ

3

3

)
− 1

x2

(
θ − θ

2

2

)
+1

2

(
1− x
x

)2[
exp(2xθ)

(
1− θ + 1

x

)2

−
(

1+ x
x

)2]
. (69)

Expanding (69) as a series in the powers ofx we get

P(ABnA) = 1

2
(1− θ)2δn,0+ 2n+1θn

(n+ 2)!

×
[
(n+ 1)(n+ 2)

4
(1− θ)2+ nθ(1− θ)+ n

n+ 4
θ4

]
. (70)
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Let us note that the probabilities of findingB-clusters and sequences of the contiguous
symbolsB (so calledB-tuplets) are connected by the simple stoichiometric relationship;
P(ABnA) = P(Bn)− 2P(Bn+1)+ P(Bn+2), n > 1, whereP(Bn) denotes the probability
of the corresponding tuplet. This relationship allows us to express the generating function

gB(x) =
∞∑
n=1

P(Bn)xn (71)

in terms of generating function (69)

gB(x) = x2

(x − 1)2

[
GB(x)− 1− 1

x
[1+ P(A)]

]
. (72)

Substituting (69) into (72) we obtain

gB(x) = 1

2

[
(1− θ)2− 1+ exp(2xθ)

(
1− θ + 1

x

)2

−
(

1+ 1

x

)2]
. (73)

Expanding (73) as a power series leads to the formula

P(Bn) = 2n+1θn

(n+ 2)!

[
(n+ 1)(n+ 2)

4
(1− θ)2+ (n+ 2)θ(1− θ)+ θ2

]
(74)

which was obtained in [39] by a different method. It is noteworthy, that whenr = 0 and
q = −1, i.e. k′ = 0, k = 1/2, both discussed cases coincide. Therefore, we can use (63)
and (64) to obtain

GB(x) = 1

x
exp(−θ)[1− (1− x) exp(xθ)] P(ABnA) = θn

n!

[
1− θ

n+ 1

]
exp(−θ).

(75)

Analysis of (68) shows that

P(ABnA) ≈ (q + 2)n
θn

n!
(76)

asn→∞, in accordance with the results obtained in [39].
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Appendix

In order to obtain the simple proof of the Mityushin theorem (8), we use the approach
suggested in [22, 40] for determining the probability

P(An) ≡ Pn(t) (A1)

to find the sequence ofn symbolsA, in the framework of the Keller model. The authors
of [22, 27], having written the exact set of equations forPn(t)

d

dt
Pn(t) = −[2k1+ (n− 2)k0]Pn(t)+ 2(k1− k0)Pn+1(t) n > 2 (A2)
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found that its solution, subject to the initial conditionPn(0) = 1, is

Pn(t) = P2(t) exp[−(n− 2)k0t ] n > 2 (A3)

which enabled them to reduce the infinite equations hierarchy (A2) to one easily solved
equation forP(AA). We generalize this approach to consider the probability of finding the
sequencesAαUmAβ

P (AαUmA
β) ≡ Pα,β(Um; t) (A4)

where (Um) is an arbitrary sequence comprised ofm symbols. Indicesα, β meet the
following inequalities

(1) α > 0, β > 2 (2) α > 2, β > 0 (A5)

meaning that there are not less than twoA symbols framing theUm sequence. Without loss
of generality let us restrict our further consideration to the first case of (A5). The evolution
of functionPα,β(Um; t) is governed by the following equation

d

dt
Pα,β(Um; t) = [(δα0− 1)φ1(U, 1, α)− k1− (β − 2)k0− k1δ

m
U (B)−k0δ

m
U (A)]Pα,β(Um; t)

−(δα0− 1)φ2(U, 1, α)Pα+1,β(Um; t)+ (k1− k0)Pα,β+1(Um; t)

−δα0[δ1
U(A)− δ1

U(B)]{[k2δ
2
U(B)+ k1δ

2
U(A)]Pα+1,β(Um−1; t)

−z2
UPα+2,β(Um−1; t)} −

m∑
j=1

3+j,αPα,β(Um; t)+
m∑
j=1

3−j,αPα,β(U
(j)
m ; t) (A6)

where the following notation is used

ziU = (k2− k1)δ
i
U (B)+ (k1− k0)δ

i
U (A)

3±j,α = 3±j (1− δα0δj1)

φ1(U, i, ν) = [k1+ (ν − 2)k0+ k1δ
i
U (B)+ k0δ

i
U (A)+ δν1(k0− k1+ ziU )]

φ2(U, i, ν) = (k1− k0)(1− δν1)+ δν1z
i
U . (A7)

Equation (A6) is derived from master equation (9) with regard to (A3). Herein the sequence
U
(j)
m is formed from sequenceUm by substitution of thej th symbol for the opposite one

(A ↔ B). The symbolδiu(A) is equal to 1 only if theith symbol of (Um) sequence is
A, otherwiseδiu(A) is equal to 0. In the same manner, the symbolδiU (B) is not equal to
zero only if theith place of the sequenceUm is occupied byB. Taking into account that
initially all spins have orientation opposite to the magnetic field, which corresponds to an
infinite initial sequence ofA symbols, thenPα,β(Um; 0) = 1 for all α, β andUm. Thus, the
solution of equation (A6) for all sequencesUm satisfying the above initial condition, takes
the form

Pα,β(Um; t) =
{
P2,2(Um; t) exp[−(α + β − 4)k0t ] α, β > 2

[8pt ]Pα,2(Um; t) exp[−(β − 2)k0t ] α = 0, 1, β > 2
(A8)

which makes it possible to reduce the infinite hierarchy equation (A6) to a set of a finite
number of equations for the functionsPα,β(Um; t) for all sequences(Um) at the following
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indice values:α = 0, 1, 2, β = 2. The described procedure is useful when we prove the
Mityushin theorem. In order to do this we present the function

Rα,β(Um, Vl; t) = P(AαUmAAVlAβ)P (AA)− P(AαUmAA)P (AAVlAβ) (A9)

specified for any non-negative values of indicesα, β and for pairs of arbitrary sequences
(Um) and(Vl), consisting ofm and l symbolsA andB, respectively. The equation for the
description ofRα,β(Um, Vl; t) time evolution is

d

dt
Rα,β(Um, Vl; t) =

[
(δα0− 1)φ1(U, 1, α)+ (δβ0− 1)φ1(V , l, β)− k1[δmU (B)+ δ1

V (B)]

−k0[δmU (A)+ δ1
V (A)] + 2(k1− k0) exp(−k0t)−

m∑
j=1

3+j,α −
l∑

j=1

3+j,β

]
×Rα,β(Um, Vl; t)− (δα0− 1)φ2(U, 1, α)Rα+1,β(Um, Vl; t)
−(δβ0− 1)φ2(V , l, β)Rα,β+1(Um, Vl; t)− δα0[δ1

U(A)− δ1
U(B)]

×{[k2δ
2
U(B)+ k1δ

2
U(A)]Rα+1,β(Um−1, Vl; t)− z2

URα+2,β(Um−1, Vl; t)}
−δβ0[δlV (A)− δlV (B)]{[k2δ

l−1
V (B)+ k1δ

l−1
V (A)]Rα,β+1(Um, Vl−1; t)

−zl−1
V Rα,β+2(Um, Vl−1; t)}

+
m∑
j=1

3−j,αRα,β(U
(j)
m , Vl; t)+

l∑
j=1

3−j,βRα,β(Um, V
(j)

l ; t) (A10)

where in addition to the notation presented in (A7), the following notations is used

3±j,β = 3±j (1− δβ0δjl) (A11)

as derived from master equation (9) with regard to (A3) and (A8). The sequencesU
(j)
m and

V
(j)

l are formed correspondingly from the sequencesUm andVl by substitution of thej th
symbol for the opposite one (A↔ B). The symbolδiU (A) has the same meaning asδiu(A)
provided sequence(Um) is replaced byVl . In the same manner the symbolδiV (A) is not
equal to zero only if theith place of sequenceVl is occupied byA. It is evident, taking into
account the fact that at initial timeUm = Am, Vl = Al , that the functionRα,β, α, β > 0, (A9)
is equal to zero att = 0. Similarly from (A8) we shall find the solution of equation (A10)
satisfying the mentioned initial condition for all the sequencesUm andVl as follows

Rα,β(Um; t) =


R2,2(Um; t) exp[−(α + β − 4)k0t ] α, β > 2

[6pt ]Rα,2(Um; t) exp[−(β − 2)k0t ] α = 0, 1, β > 2

[6pt ]R2,β(Um; t) exp[−(α − 2)k0t ] α > 2, β = 0, 1.

(A12)

This substitution allows us to obtain the closed sets of equations for the functions
Rα,β(Um, Vl; t), given at manifolds of all the sequences{Um} and {Vl} at the indice
valuesα, β = 0, 1, 2. These sets have the following structure: the right-hand side of
the equation forR0,0 contains functionsR1,0, R0,1, R2,0 andR2,0. The right-hand side of the
equations for functionsR0,1 andR1,0 contains functionsR2,0, R1,1, R2,1 andR2,0, R1,1, R1,2

correspondingly. The right-hand side of the equations for functionsR2,0 andR2,0 contains
corresponding functionsR2,1, R2,2 and R1,2, R2,2. The right-hand side of the equations
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for functionsR1,1, contains functionsR2,1 and R1,2, and their equations contain on the
right-hand side functionsR2,2. At last, the set of equations for functionsR2,2 is closed:

d

dt
R2,2(Um, Vl; t) = −R2,2(Um, Vl; t)

[
4k1+ 2(k1− k0) exp(−k0t)+ k1[δ1

U(B)+ δmU (B)

+δ1
V (B)+ δlV (B)] + k0[δ1

U(A)+ δmU (A)+ δ1
V (A)+ δlV (A)]

+
m∑
j=1

3+j +
l∑

j=1

3+j

]
+

m∑
j=1

3−j R2,2(U
(j)
m , Vl; t)+

l∑
j=1

3−j R2,2(Um, V
(j)

l ; t).
(A13)

It is clear from (A13) that if the functionR2,2(Um, Vl; 0) = 0, it will remain equal to
zero at all times. This statement is evident because the linear homogeneous finite set of
ordinary differential equations with zero initial conditions has only trivial solutions. This
last circumstance allows us to obtain a linear uniform set of equations for functionsR1,2

and R2,1, which also has only a trivial solution at zero initial conditions. In the same
way, it is not difficult to demonstrate that at zero initial conditions all the other functions
Rα,β, α, β = 0, 1, 2 will be equal to zero, and among them the functionR0,0. According to
(A9) the last result ends the alternative derivation of theorem (8), proved for the first time
by Mityushin [30].
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